Enhanced absorption in GaAs nanowire arrays grown on silicon substrates

K. Moratis^{1*}, R. Jayaprakash^{1,2}, S. Germanis¹, K. Tsagaraki², Z. Hatzopoulos^{2,3}, N. T. Pelekanos^{1,2}

¹Department of Materials Science and Technology, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece. ²Microelectronics Research Group, IESL-FORTH P.O. Box 1385, 71110 Heraklion, Greece. ³Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece

We report here on equivalent transmittance measurements in GaAs nanowires (NWs) grown on n+ Si(111) substrates, an example of which is shown in the SEM image of Figure 1. The GaAs NWs are grown by molecular beam epitaxy via the Ga-assisted Vapor-Liquid-Solid mechanism. The structural properties of the samples are controlled by varying various growth parameters such as the As-Ga stoichiometry, the substrate anneal time and temperature and Ga pre-deposition time. In order to control the NW diameter we follow a two-stage growth via Ga droplet removal.

 α =3.963 μ m⁻¹ α =1.807 μ m⁻¹ α =1.787 μ m⁻¹ α =2.036 μ m⁻¹ 800 805 810 815 820 825 830 835 840 Wavelength (nm)

Figure 1: Top view SEM image of a NW Sample.

Figure 2: Transmittance spectra at T=20K.

Utilizing a common reflectivity setup, we deduce the transmittance spectra of several NW samples, as the ones shown in Figure 2, from which we estimate the effective absorption coefficient α , based on a modified expression of Beer-Lambert law, taking into account the non-uniform orientation of the NWs on the substrate surface, and neglecting any anisotropy effects,

$$\ln \frac{I}{I_0} = -2f_p la - 2f_t \frac{d}{\cos(\theta)}a$$

where I_0 is the power of the incident light, I the power of the reflected light, f_p the filling factor of the vertical NWs, f_t the filling factor of the tilted NWs, l and d the average height and diameter of the NWs, respectively, and θ the average angle of the tilted NWs with respect to the substrate plane. The α -values in Figure 2 correspond to the low temperature absorption coefficient at the exciton gap for each sample, and clearly indicate pronounced absorption enhancement effects, at least compared to the bulk GaAs where $\alpha = 1.1 \mu m^{-1}$.

Acknowledgments: This work was supported by the European Social Fund and National resources through the ARISTEIA II Program "NILES".

^{*}moratisk@materials.uoc.gr