Study of CMR effect and magnetic order in perovskite (La, Pr, Nd) $MnO_{3+\delta}$ ($\delta \approx 0.09$, 0.12) compounds.

<u>K. Georgalas</u>*, E. Syskakis

Section of Solid State Physics, School of Physics, University of Athens, Panepistimiopolis, Gr-15784 Zografos, Athens.

*email: <u>kogeorg@phys.uoa.gr</u>

In the present work, magnetoresistance and magnetic properties of bulk polycrystalline specimen of $La_{1-x}Pr_xMnO_{3+\delta}$ (x=0.00-1.00) and $La_{1-y}Nd_yMnO_{3+\delta}$ (y=0.00-0.50) perovskite type compounds were investigated by LFMR(T) (H≈2kG) and χ_{ac} (T) (80<T<300 K) measurements. The compounds were synthesized by solid state reaction using high purity La_2O_3 , Pr_6O_{11} , Nd₂O₃, MnO₂ in air. Series of pressed samples with different x, y were exposed to oxidative conditions (P_{02} =0.21, 1 bar T=900°C/100h) after sintering at high temperature, in order to achieve a high and homogeneous O_2 distribution in the specimen.

The $\chi_{\rm ac}(T)$ measurements show that both the Pr-, as well as the Nd-doped specimen exhibit FM transitions at T<150 K. In the long range FM state established at low doping $(x, y \le 0.20)$ the Curie temperatures, T_c , and the spontaneous susceptibility decrease monotonously with the dopant concentration. The values of T_c are systematically lower for the Nd-doped samples. These variations indicate progressive weakening of the long range FM state resulting by increasing distortion introduced by the smaller radii of the ions (r_{Nd}^{3+} =1.27Å $\langle r_{Pr}^{3+}$ =1.30Å substituted at A-site For intermediate dopant concentrations $(0.20 \le x \le 0.80$ and for La. spontaneous $\chi_{ac}(T)$ 0.20 < v < 0.50shows the an unusual thermal dependence. Two consecutive FM type transitions are clearly recognized, indicating the competition between FM double-exchange and AFM superexchange interactions [1]. $\chi_{ac}(T)$ measurements on similarly treated powders show qualitatively same magnetic ordering behavior, thus ruling out phenomena of oxygen inhomogeneity in specimen. Finally, at still higher Pr-, and Nd- doping only the transition from PM to Canted-AFM state is observed.

The LFMR(T) measurements for specimen in the low doping regime (x, y \leq 0.20) show broad peaks close to the corresponding FM transitions. These peaks shift to lower T with increasing x, y as expected for the DE originating intrinsic phenomenon of CMR. The LFMR(T) for specimen with x>0.20 displays two successive broad peaks, supporting the existence of two FM phases, in good agreement with the $\chi_{\rm ac}(T)$ measurements.

References

[1] V. Dyakonov, et al, Phys. Rev. B 77, 214428, (2008)