Orbital and magnetic order in LaMn_{1-x}Cr_xO_{3+ δ} (x=0.0-0.25) compounds

A. Samartzis, and E. Syskakis

Department of Solid State Physics, School of Physics, University of Athens, Panepistimiopolis, Gr-15784 Zografos, Athens.

email: esysk@phys.uoa.gr

The effect of Cr substitution for Mn on the orbital order-disorder (Jahn-Teller) transition, prototypically exhibited by stochiometric LaMnO₃ at 750 K, remained unexplored to present times. Recent work (1, 2) on LaMn_{1-x}Cr_xO_{3+ δ} compounds mainly focused on their magnetic/structural properties addressing questions like the nature of the magnetic Mn³⁺-Cr³⁺ (double exchange (DE) or super exchange(SE)) which is responsible for the FM behaviour observed upon increasing x in hole-free specimen. In the present work Cr doping at Mn site was employed to investigate its influence on the J-T distortion. Cr³⁺, with an ionic radius (0.615 Å) comparable to that of high-spin Mn³⁺ (0.64Å) should not cause extensive lattice distortion. However, Cr³⁺, being isoelectronic to Mn⁴⁺ should introduce non-distorted Cr³⁺O₆ octahedra, randomly distributed at spatially fixed Mn³⁺ sites.

The LaMn_{1-x}Cr_xO_{3+δ} samples (0.00≤x≤0.25) were investigated by electrical resistivity, $\rho(T)$, differential thermal analysis, DTA, (300-1100K) and χ_{ac} measurements (80-300 K). The powders of the compounds have been prepared using high purity La₂O₃, Cr(NO3)₃9H₂O and MnO₂ by solid state reaction and were exposed finally to T=1300°C in air. Pressed samples of different Cr content were simultaneously subjected to heat treatments–densification at T=900-1300°C, under controlled atmospheres (P_{O2}=210-10⁻⁶ mbar), to obtain specimen with successively lower O₂-excess up to $\delta \approx 0$.

The results of the $\rho(T)$ measurements show semiconducting behaviour. For specimen with $\delta < 0.04$ a step like

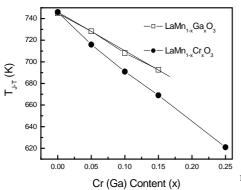


Fig.1: Displacement of the Jahn Teller transition by $B=Cr^{3+}$, Ga^{3+} in LaMn_{1-x}B_xO₃ compounds.

decrease of the $\rho(T)$, observed at 600-750K, is recognized as the signature of the J-T transition. In Fig.1 the transition temperatures, T_{J-T} , obtained for specimen with $\delta \approx 0$, are plotted against Cr doping, x. They show an approximately linear decrease of T_{J-T} upon increasing x. The DTA investigations show a single peak for each one of the LaMn_{1-x}Cr_xO₃ ($\delta \approx 0$) specimen, obviously reflecting the exchange of latent heat at the J-T transition. The peak temperatures are found very close to the corresponding T_{J-T}, values. The DTA peaks progressively broaden, while the latent heat (area under peak) shows a strong reduction upon increasing x, approaching zero for samples with x \geq 0.15. It is therefore clear that both $\rho(T)$ and DTA results unambiguously demonstrate that Cr^{3+} strongly affects the orbitally ordered state. The displacement of T_{I-T} might be attributed to a suppression of the cooperative J -T distortion caused by the reduction of the concentration of $\rm Mn^{3+}$ and possibly by an additional reduction of local J-T distortion of Mn³⁺O²₆ neighboring with non distorted Cr³⁺O²⁻₆. It should however be remarked that the data of Fig.1 are in contrast to conclusions drawn in ref. (3). Furthermore, as

shown in Fig.1, Cr^{3+} clearly causes a significantly stronger displacement of T_{J-T} than the isoelectronic nonmagnetic Ga³⁺ despite their size similarity (r _{Ga3+}=0.62 Å).

The results of the χ_{ac} measurements for O₂-rich specimen (δ° 0.09) show DE-dominated FM transitions, with non-monotonic variation of the Curie temperatures with Cr doping, in accordance with literature data(4). For specimen with low Mn⁴⁺ content, δ <0.04, transitions to the CA-AFM have been observed at T_{CA} <140K. The spontaneous susceptibility exhibits a steep increase suggesting a considerable enhancement of the FM interactions in specimen with x≥0.15. On the other hand, T_{CA} shows a minimum at x=0.10-0.15. As the position of the minimum apparently depends on the Mn⁴⁺ content it rather indicates a competition of magnetic DE and SE interactions. The enhancement of FM interactions resulting in a strengthening of the CA-AFM state seems therefore to be favored in Mn⁴⁺ -free specimen.

References:

(1) Y. Sun et al. PRB 63, 174438, (2001); J. Deisenhofer et al., PRB 66, 054414, (2002)

(2) L.W. Zhang et al. J. Magn. Magn. Mat. **219**, 236. (2000); L. Morales et al. J. Solid state Chem. **180**, 1824 (2008)

(3) A. Ramos et al. PRB 87, 220404(R), (2013)

(4) L. Morales et al. PRB 72, 132413, (2005)